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ABSTRACT
Any algorithm that applies to all MDPs will suffer
Ω(
√
|S||A|T ) regret on some MDP. So what do we

do when |S|, |A| are extremely large or infinite?
The curse of dimensionality means our only hope
is to exploit some low-dimensional structure.

We show that if the MDP can be parameterized
within some known function class, we obtain re-
gret bounds that scale with the dimensionality,
rather than cardinality, of the system. We char-
acterize this dependence explicitly in terms of the
eluder dimension. We also present a simple and
computationally efficient algorithm (PSRL) that
satisfies these bounds. These are the first regret
bounds for general model-based learning.
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PROBLEM FORMULATION
Learn to optimize a random finite horizon MDP
M in repeated finite episodes of interaction.

Figure 1: classic reinforcement learning setting

• State space S, action space A
• Rewards rt ∼ RM (st, at) ∈ R
• Transitions st+1 ∼ PM (st, at) ∈ P
• Epsiode length τ , define tk := (k − 1)τ + 1

For MDP M and policy µ, define a value function

VMµ,i(s) := EM,µ
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Define the regret in episode k using µk on M∗

∆k :=
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optimal value
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∗
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And finally Regret(T, π,M∗) :=
∑dT/τe
k=1 ∆k.

Naive exploration such as Boltzman or ε-greedy
can lead to exponential regret. Good performance
requires balancing exploration vs exploitation.

ELUDER DIMENSION
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Eluder principle: a measurement at x is indepen-
dent of {x1, .., xn} if functions that are similar at
{x1, .., xn} could differ significantly at x.

Definition 1 ((F , ε)− dependence).
We will say that x ∈ X is (F , ε)-dependent on
{x1, ..., xn} ⊆ X ⇐⇒ ∀f, f̃ ∈ F ⊆ {f : X → Rn}
n∑
i=1

‖f(xi)− f̃(xi)‖22 ≤ ε2 =⇒ ‖f(x)− f̃(x)‖2 ≤ ε.

x ∈ X is (ε,F)-independent of {x1, .., xn} iff it
does not satisfy the definition for dependence.

Figure 2: x5 is ({f1, f2}, 1)-independent of {x1, .., x4}.

Definition 2 (Eluder Dimension = dimE(F , ε)).
The length of the longest possible sequence of el-
ements in X such that for some ε′ ≥ ε every ele-
ment is (F , ε′)-independent of its predecessors.

Examples
• X finite =⇒ dimE(F , ε) ≤ |X |.
• F ⊆ {f : Rn → Rp linear}

=⇒ dimE(F , ε) = O (np log(1/ε))

KOLMOGOROV DIMENSION
The Kolmogorov dimension of a function class F :

dimK(F) := lim sup
α↓0

log(

α−covering number︷ ︸︸ ︷
N(F , α, ‖ · ‖2) )

log(1/α)
.

In this diagram
N(F , α, ‖ · ‖2) ≤ 7

Example: dimK(Rd) = d

LIPSCHITZ SMOOTHNESS

Definition 3 (Future value function UMi ).
For any distribution Φ over S we define:

UMi (Φ) := EM,µM

[
VMµM ,i+1(s)

∣∣s ∼ Φ
]

as the value of the optimal policy, starting from Φ.

• Learning an infinite MDP requires regularity

• Assume UM
∗

i is Lipschitz inE[s|s ∼ Φ] wrt ‖·‖2

• Satisfied whenever VM
∗

µ∗,i Lipschitz in swrt ‖ ·‖2

• But this is a strictly weaker condition since
system noise can help smooth future value.

POSTERIOR SAMPLING
For each episode k:

1. Sample an MDP from the posterior distribu-
tion for the true MDP: Mk ∼ φ(·|Ht).

2. Use policy µk ∈ arg max
µ

VMk
µ .

MAIN RESULTS
IfM∗ is an MDP with rewardsR∗ ∈ R and transi-
tions P ∗ ∈ P with sub σ-Gaussian noise then the
expected regret to time T of PSRL is bounded:

Õ

(
σR
√
dK(R)dE(R)T︸ ︷︷ ︸

rewards

+E[K∗]︸ ︷︷ ︸
Lipschitz

σP
√
dK(P)dE(P)T︸ ︷︷ ︸

transitions

)

Notation:
• Kolmogorov dimension dK(F) := dimK(F)
• Eluder dimension dE(F) := dimE(F , T−1)
• Lipschitz constant K∗ for future value function

Corollary:
Let M∗ be a linear-quadratic system in Rd with
σ-sub-Gaussian noise mean-bounded by C then:

E[Regret(T, πPS ,M∗)] = Õ
(
σCd2

√
T
)

︸ ︷︷ ︸
no exponential scaling in d

.

PROOF SKETCH
We consider the regret in an episode k:

∆k = V ∗∗,1(s)− V ∗k,1(s)

=
(
V kk,1(s)− V ∗k,1(s)

)︸ ︷︷ ︸
Imagined - Actual

+
(
V ∗∗,1(s)− V kk,1(s)

)︸ ︷︷ ︸
E[·]=0 by posterior

We can decompose this into Bellman error:

V kk,1−V ∗k,1 =
τ∑
i=1

(
T kk,i − T ∗k,i

)
V kk,i+1︸ ︷︷ ︸

B:=Bellman error

+
τ∑
i=1

dtk+1︸ ︷︷ ︸
E=0 martingale

.

We can now use the Hölder inequality to bound:

B ≤
τ∑
i=1

{
|Rk −R∗|︸ ︷︷ ︸
reward error

+ Kk︸︷︷︸
Lipschitz

‖P k − P ∗‖2︸ ︷︷ ︸
transition error

}

We conclude the proof by upper bounding these
deviations in terms of our estimation errors onR∗

and P ∗. We use concentration inequalities to ex-
press the error bounds forR and P in terms of the
eluder dimension and Kolmogorov dimension.

Note a proof for a similar optimistic algorithm
is possible, however this would require a gener-
ally intractable planning step. We believe that the
sampling approach will also be more statistically
efficient since it is not affected by loose analysis.

SO WHAT?
• Practical reinforcement learning problems

often have |S| and |A| very large or infinite.

• “Tabula rasa” learning will always require
minimum T = Ω(|S||A|) for good guarantees
=⇒ must exploit low-dimensional structure.

• We produce a unified analysis for model-
based RL in terms of the dimensionality,
rather than the cardinality, of the system.

• Conceptually simple, computationally effi-
cient algorithm PSRL satisfies these bounds.


