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ABSTRACT

Any algorithm that applies to all MDPs will sutfer

Q(+/|S]|A|T) regret on some MDP. So what do we
do when |S], | A| are extremely large or infinite?
The curse of dimensionality means our only hope
is to exploit some low-dimensional structure.

We show that if the MDP can be parameterized

within some known function class, we obtain re-
gret bounds that scale with the dimensionality,
rather than cardinality, of the system. We char-
acterize this dependence explicitly in terms of the
eluder dimension. We also present a simple and
computationally efficient algorithm (PSRL) that
satisfies these bounds. These are the first regret
bounds for general model-based learning.

PROBLEM FORMULATION

Learn to optimize a random finite horizon MDP
M in repeated finite episodes of interaction.

Environment

Figure 1: classic reinforcement learning setting

State space S, action space A

Rewards r; ~ R™ (s,a;) € R

Transitions s;41 ~ PM(s4,a;) € P
Epsiode length 7, define ¢, := (k — 1)7 + 1

For MDP M and policy p, define a value function
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Define the regret in episode £ using p; on M*
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And finally Regret(T, 7w, M*) := > ,Lq;/lﬂ Ak.

Naive exploration such as Boltzman or e-greedy
can lead to exponential regret. Good performance
requires balancing exploration vs exploitation.
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ELUDER DIMENSION
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Eluder principle: a measurement at z is indepen-
dent of {z1, .., x,} if functions that are similar at
{z1,..,z,} could differ significantly at x.

Definition 1 ((F, €) — dependence).
We will say that x € X is (F,¢)-dependent on
{x1,...,2p,} CX <= Vf,fe FC{f: X = R"}

T e Xis (¢, F)-independent of {x1,..,x,} iff it

does not satisty the definition for dependence.
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Figure 2: x5 is ({ f1, f2}, 1)-independent of {x1, .., x4 }.

Definition 2 (Eluder Dimension = dimg(F, €)).
The length of the longest possible sequence of el-
ements in X such that for some ¢’ > ¢ every ele-
ment is (F, €' )-independent of its predecessors.

Examples
e X finite = dimpg(F,¢e) < |X|.
o F CH{f:R"™ — RP linear}

— dimpg(F,€) = O (nplog(1/e))

KOLMOGOROV DIMENSION

The Kolmogorov dimension of a function class F:
o —covering number

e N——
log(N(fv&v H ' H2))

log(1/c)

In this diagram
N(F |- ll2) =7

(F) := limsup

Example: dimg (RY) = d
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LIPSCHITZ SMOOTHNESS

Definition 3 (Future value function U).
For any distribution ® over § we define:

UZ-M(CI)) = 5 v [VM%,iH(S)‘S ~ CID]

as the value of the optimal policy, starting from ®.

e Learning an infinite MDP requires regularity

e Assume UM is Lipschitz in E[s|s ~ ®] wrt [|- ||
e Satisfied whenever Vuj‘f; Lipschitz in s wrt || - ||2

e But this is a strictly weaker condition since
system noise can help smooth future value.

POSTERIOR SAMPLING

For each episode k:

1. Sample an MDP from the posterior distribu-
tion for the true MDP: M, ~ ¢(-|Hy).

2. Use policy py, € arg maxV; .
[

MAIN RESULTS

If M*is an MDP with rewards R* € R and transi-
tions P* € P with sub o-Gaussian noise then the
expected regret to time 71" of PSRL is bounded:

O(UR\/dK(R)dE(R)T—I— *)[K*] op \/dK(P)dE(P)T>
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rewards Lipschitz transitions

Notation:

e Kolmogorov dimension dg (F) := dimg (F)

e Eluder dimension dg(F) := dimg(F, T~ 1)

e Lipschitz constant K™ for future value function

Corollary:
Let M* be a linear-quadratic system in R¢ with
o-sub-Gaussian noise mean-bounded by C' then:

E[Regret(T, 775, M*) = O (accz?ﬁ)
N——— —

no exponential scaling in d

REFERENCES

Please see the full paper:
http:/ /arxiv.org/abs/1406.1853

PROOF SKETCH

We consider the regret in an episode k:
Ak Via(s) = Via(s)
— (ka1(3) — Vk*1(3)) + (Vf,1(5) — ka,l(s))
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I5[-]=0 by posterior

We can decompose this into Bellman error:

T

Vklfl_vkil — Z (Ekz — 77:@) ka,H—l T Z dt,+1
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B:=Bellman error IE=0 martingale

We can now use the Holder inequality to bound:

[ —k =%
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Lipschitz transition error

reward error

We conclude the proof by upper bounding these
deviations in terms of our estimation errors on R*
and P*. We use concentration inequalities to ex-
press the error bounds for R and P in terms of the
eluder dimension and Kolmogorov dimension.

Note a proof for a similar optimistic algorithm
is possible, however this would require a gener-
ally intractable planning step. We believe that the
sampling approach will also be more statistically
efficient since it is not atfected by loose analysis.

Practical reinforcement learning problems
often have |S| and |A| very large or infinite.

“Tabula rasa” learning will always require
minimum 7' = Q(|S||A|) for good guarantees
—> must exploit low-dimensional structure.

We produce a unified analysis for model-
based RL in terms of the dimensionality,
rather than the cardinality, of the system.

Conceptually simple, computationally effi-
cient algorithm PSRL satisfies these bounds.
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