(More) Efficient Reinforcement Learning via Posterior Sampling Ian Osband, Daniel Russo and Benjamin Van Roy - Stanford University

Introduction

• We study efficient exploration in reinforcement learning.

 Most provably-efficient learning algorithms introduce optimism about poorly understood states and actions.

 Motivated by potential advantages relative to optimistic algorithms, we study an alternative approach: posterior sampling for reinforcement learning (PSRL).

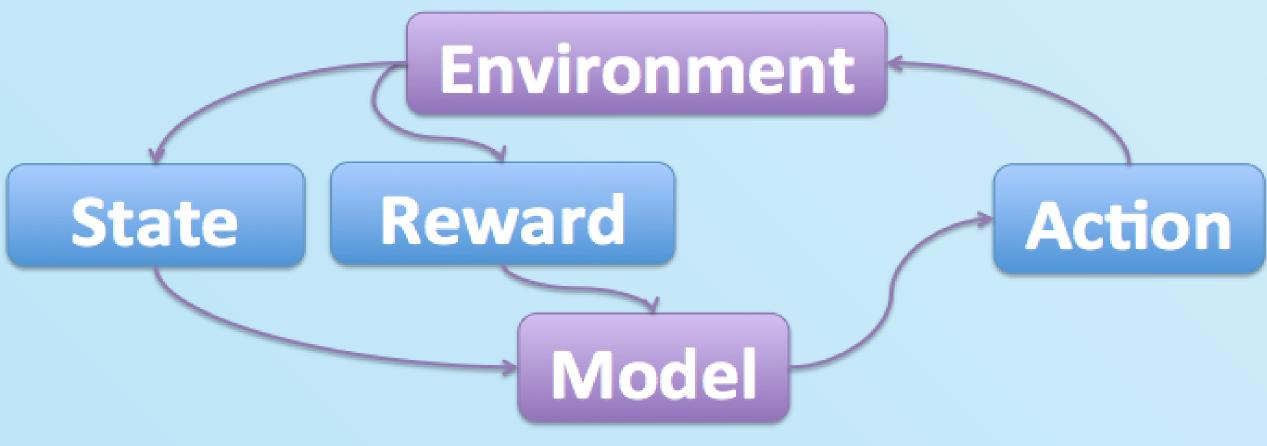
• This is the extension of the Thompson sampling algorithm for multi-armed bandit problems to reinforcement learning.

• We establish the first regret bounds for this algorithm.

Problem Formulation

• We study learning to behave near optimally in a fixed but unknown (randomly drawn) MDP M^* .

- Repeated τ -length episodes of interaction with the MDP.
- In episode k, actions selected based on chosen policy μ_k .
- As a result of a_t , the reward r_t and next state s_{t+1} are drawn according to on M^* .
- Goal: Maximize cumulative reward earned.
- Requires managing exploration / exploitation tradeoff.



Algorithm - PSRL

Data: Prior distribution f, t=1 for episodes $k = 1, 2, \ldots$ do sample $M_k \sim f(\cdot | H_{t_k})$ compute $\mu_k = \mu^{M_k}$ for timesteps $j = 1, \ldots, \tau$ do sample and apply $a_t = \mu_k(s_t, j)$ observe r_t and s_{t+1} t = t + 1end end

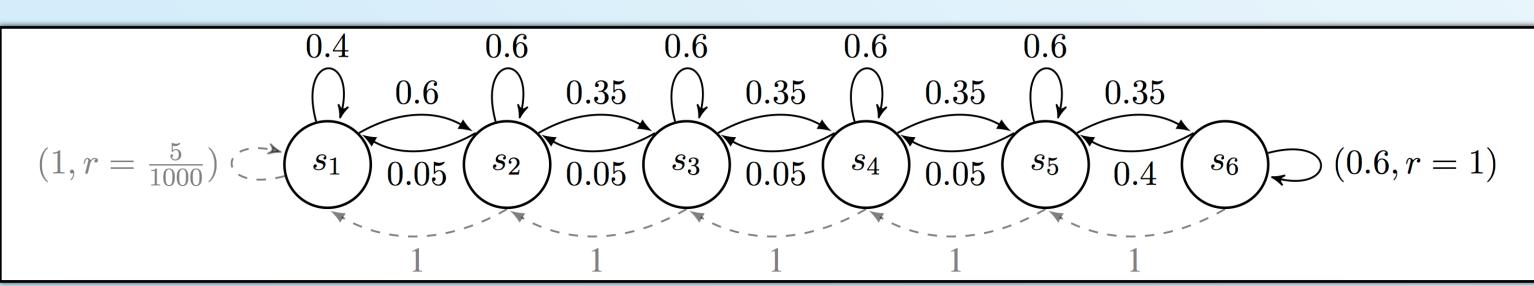
*First introduced by Strens (2002) under the name "Bayesian Dynamic Programming."

Motivation - Advantages of PSRL

- ✓ Conceptually simple, separates algorithm from analysis:
 - PSRL selects policies according to the probability they are optimal without need for explicit construction of confidence sets.
 - UCRL2 bounds error in each (*s*, *a*) separately, which allows for worst-case mis-estimation to occur simultaneously in every (s, a).
 - We believe this will make PSRL more statistically efficient.
- ✓ The algorithm is computationally efficient:
 - Optimistic algorithms often require optimizing simultaneously over all policies and a family of plausible MDPs.
 - PSRL computes the optimal policy under a *single* sampled MDP.
- Can naturally incorporate prior knowledge:
 - Crucial for practical applications Tabula Rasa is often unrealistic.
 - Our bounds apply for any prior distribution over finite MDPs.
 - PSRL can use *any* environment model, not just finite MDPs.

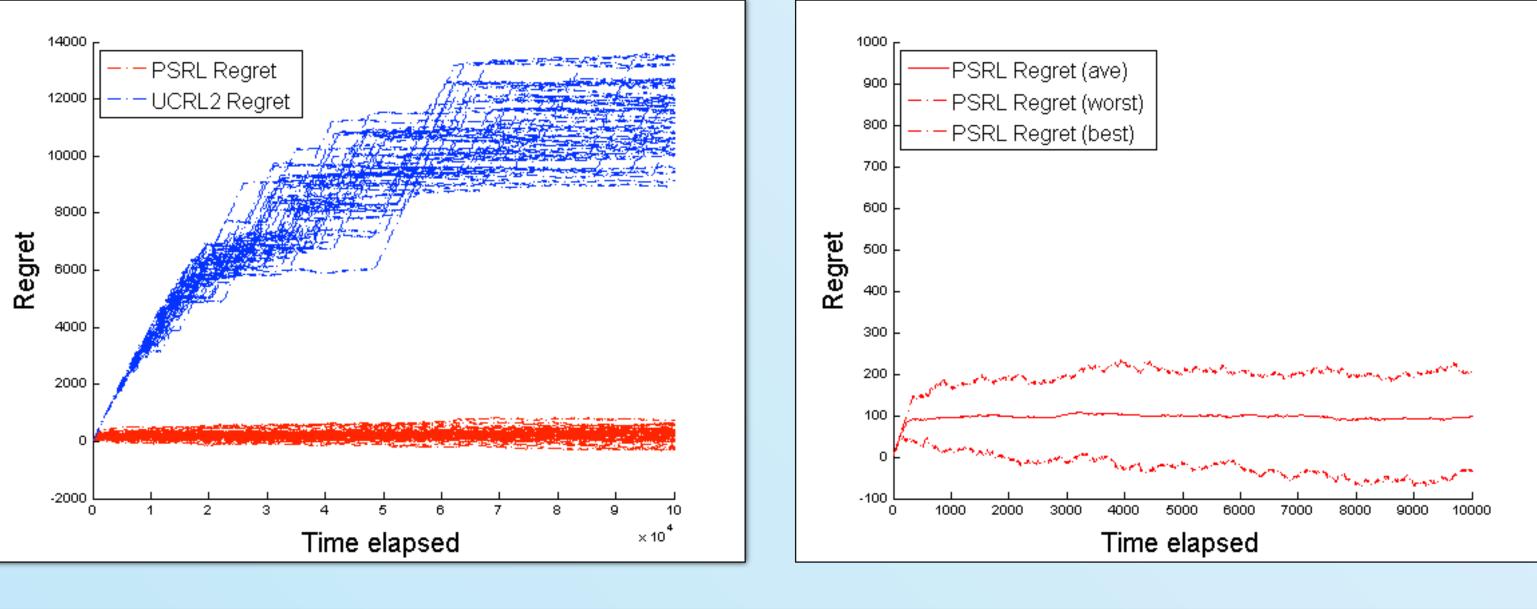
Experimental results

We compared the performance of PSRL to UCRL2 (an optimistic algorithm with similar regret bounds) on several MDP examples.



• We tested the algorithm on *RiverSwim* (an MDP designed to require efficient exploration) as well as random MDPs.

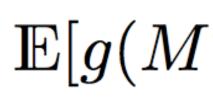
- We saw that PSRL outperforms UCRL2 by large margins.
- PSRL learns quickly even with a mis-specified prior.



	Random MDP	Random MDP	RiverSwim	RiverSwim
Algorithm	au-episodes	∞ -horizon	au-episodes	∞ -horizon
PSRL	1.04×10^4	$7.30 imes10^3$	6.88×10^{1}	$1.06 imes 10^2$
UCRL2	$5.92 imes 10^4$	$1.13 imes10^5$	1.26×10^{3}	$3.64 imes 10^3$

Key lemma - posterior sampling

The true and sampled MDPs are equal in distribution at the start of an episode (when the sample is taken).



Any H_{t_k} -measurable function of these MDPs must therefore be equal in expectation.

Regret bounds

The regret of an algorithm π at time T is the random variable equal to the cumulative reward of the optimal policy minus the realized rewards of π .

 $\mathbb{E} | \operatorname{Regret}(T,$

For any $\alpha > 0.5$:

Summary

References

Please consult arXiv:1306.0940 for a full list of references. Simulation code is available at www.stanford.edu/~iosband

 $\mathbb{E}[g(M^*)|H_{t_k}] = \mathbb{E}[g(M_k)|H_{t_k}].$

Our main result bounds expected regret under the prior:

	1	N
$,\pi_{ au}^{\mathrm{PS}})]=O($	$\left(\tau S\right)$	$\overline{AT\log(SAT)}$

• This is not a worst-case MDP bound as per UCRL2 etc.

• But, the two bounds are related via Markov's inequality:

 $\operatorname{Regret}(T, \pi_{\tau}^{\operatorname{PS}})$ $\rightarrow 0.$

 Corresponding results for UCRL2/REGAL deal with nonepisodic learning, and replace T with Diameter/Span.

• In the episodic case, all three give $O(\tau S\sqrt{AT})$ bounds.

• These are close to the lower bounds in S,A and T of \sqrt{SAT} .

• PSRL is not just a heuristic but is provably efficient

• First regret bounds for an algorithm not driven by "OFU".

• Regret bounds are competitive with state of the art.

• Bounds allow for an arbitrary prior over finite MDPs.

• Conceptually simple, computationally efficient.

• Statistically efficient, separating algorithm from analysis.

Performs well in simulation on benchmark MDPs.