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• We study efficient exploration in reinforcement learning.  

• Most provably-efficient learning algorithms introduce 

optimism about poorly understood states and actions. 

• Motivated by potential advantages relative to optimistic 

algorithms, we study an alternative approach: posterior 

sampling for reinforcement learning (PSRL).  

• This is the extension of the Thompson sampling algorithm 

for multi-armed bandit problems to reinforcement learning.  

• We establish the first regret bounds for this algorithm. 

 

  Conceptually simple, separates algorithm from analysis: 

• PSRL selects policies according to the probability they are optimal 

without need for explicit construction of confidence sets. 

• UCRL2 bounds error in each 𝑠, 𝑎  separately, which allows for 

worst-case mis-estimation to occur simultaneously in every 𝑠, 𝑎 .   

• We believe this will make PSRL more statistically efficient. 

  The algorithm is computationally efficient:  

• Optimistic algorithms often require optimizing simultaneously over 

all policies and a family of plausible MDPs. 

• PSRL computes the optimal policy under a single sampled MDP.  

  Can naturally incorporate prior knowledge: 

• Crucial for practical applications -Tabula Rasa is often unrealistic. 

• Our bounds apply for any prior distribution over finite MDPs. 

• PSRL can use any environment model, not just finite MDPs. 

The regret of an algorithm 𝜋 at time 𝑇 is the random 

variable equal to the cumulative reward of the optimal policy 

minus the realized rewards of 𝜋. 

Our main result bounds expected regret under the prior: 

• This is not a worst-case MDP bound as per UCRL2 etc. 

• But, the two bounds are related via Markov’s inequality: 

For any α > 0.5 :  

• Corresponding results for UCRL2/REGAL deal with non-

episodic learning, and replace τ with Diameter/Span. 

• In the episodic case, all three give O(𝜏𝑆 𝐴𝑇) bounds. 

• These are close to the lower bounds in S,A and T of 𝑆𝐴𝑇.  

The true and sampled MDPs are equal in distribution at the 

start of an episode (when the sample is taken). 

Any 𝐻𝑡𝑘-measurable function of these MDPs must therefore 

be equal in expectation. 

  Summary 

• PSRL is not just a heuristic but is provably efficient  

• First regret bounds for an algorithm not driven by “OFU”. 

• Regret bounds are competitive with state of the art. 

• Bounds allow for an arbitrary prior over finite MDPs. 

• Conceptually simple, computationally efficient. 

• Statistically efficient, separating algorithm from analysis. 

• Performs well in simulation on benchmark MDPs. 

Please consult arXiv:1306.0940 for a full list of references.  

Simulation code is available at www.stanford.edu/~iosband 

  Problem Formulation 

 Algorithm - PSRL 

*First introduced by Strens (2002) under the name 

“Bayesian Dynamic Programming.”  

• We study learning to behave near optimally in a fixed but 

unknown (randomly drawn) MDP 𝑀∗.  

• Repeated 𝜏-length episodes of interaction with the MDP. 

• In episode 𝑘, actions selected based on chosen policy 𝜇𝑘. 

• As a result of 𝑎𝑡, the reward 𝑟𝑡 and next state 𝑠𝑡+1 are 

drawn according to on 𝑀∗. 

• Goal: Maximize cumulative reward earned. 

• Requires managing exploration / exploitation tradeoff.  

 

  Experimental results 

We compared the performance of PSRL to UCRL2 (an optimistic 

algorithm with similar regret bounds) on several MDP examples. 

• We tested the algorithm on RiverSwim (an MDP designed to require 

efficient exploration) as well as random MDPs. 

• We saw that PSRL outperforms UCRL2 by large margins. 

• PSRL learns quickly even with a mis-specified prior. 


