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Contribution
Propose randomized least-squares value iteration (RLSVI),
a new reinforcement learning (RL) algorithm designed to
explore and generalize efficiently via linearly parameterized
value functions. RLSVI is:

• BOTH provably efficient in the tabular learning case

• AND empirically efficient in several representative
RL problems with value function generalization

Problem formulation
Learn to optimize a random finite horizon MDP M =
(S,A, R, P,H) in repeated episodes of interaction.

Figure 1: the reinforcement learning problem.

• State space S, action space A
• Rewards rt ∼ RM (st, at)

• Transitions st+1 ∼ PM (st, at)

• Finite epsiode length H

For MDP M policy µ, define value function:

QMµ,h(s,a):=EM,µ

 H∑
j=h

rM (sj ,aj)
∣∣∣sh=s,ah=a

,
We define the value VMµ,h(s):=QMµ,h(s,µ(s,h)) and the regret
in episode k using µk on M∗

∆k := VM
∗

µ∗,1(s)︸ ︷︷ ︸
optimal value

− VM
∗

µk,1
(s)︸ ︷︷ ︸

actual value

,

and Regret(T, π,M∗) :=
∑dT/He
k=1 ∆k.

Our goal is to design algorithms which can guarantee low
regret (statistical efficiency) while remaining computation-
ally tractable, even in large problems.

Linear Value Functions
The agent models that,

Q∗h ∈ span [Φh] for some Φh ∈ RSA×K .

• We call Φh the generalization matrix.
• Φh is given a priori and is not learned.
• Q∗h ∈ span [Φh] =⇒ coherent learning.
• Q∗h /∈ span [Φh] =⇒ agnostic learning.

Inefficient Exploration Schemes
There is a large literature on efficient exploration in RL.
Most of these are motived by some combination of:
• Bayes-optimal tree search.
• Optimism in the face of uncertainty.
• Thompson sampling.

However, most of these algorithms become computationally
intractable for large problems with generalization.

For this reason, most practical approaches to large-scale
RL resort to simple dithering exploration.
• Dithering selectively takes random actions.
• e.g. ε-greedy and Boltzmann exploration
• can lead to regret that grows exponentially in H

and/or S (see Kearns & Singh, 2002; Kakade, 2003)

• Efficient RL requires exploration which is directed
over multiple timesteps = “deep exploration”.

Figure 2: An MDP where dithering is highly inefficient.

• Consider a long chain with S = H = N .
• Two actions “left” and “right” as shown in Figure 2.
• Optimal policy is to go right V ∗0 (s1) = (1− 1

N )N−1.
• Any other of the 2N×N policies will have 0 reward.
• Before reward dithering strategies explore at random.
• Thus, dithering has liminfT→∞Regret(T )≥2S−1−1.

High-Level Motivation
• Inspired by Thompson sampling for RL = PSRL.
• PSRL demonstrates efficient exploration with gener-

alization (Osband and Van Roy 2014a;b) BUT
– Requires model-based MDP planning.
– Does not allow value function generalization.

• RLSVI uses an approximate posterior for PSRL.
• Bayesian linear regression for the value function.
• Posterior is wrong... but it might still be useful.

RLSVI Algorithm
1: Input: Φ0(si0,ai0),ri0,..,ΦH−1(siH−1,aiH−1),riH :i<L,

Parameters λ>0, σ>0
2: Output: θ̃l0,..,θ̃l,H−1

3: for h=H−1,..,1,0 do
4: Generate regression problem A∈<l×K , b∈<l:

A←

 Φh(s0h,a0h)
...

Φh(sl−1,h,al−1,h)


bi←

{
rih+maxα

(
Φh+1θ̃l,h+1

)
(si,h+1,α) if h<H−1

rih+ri,h+1 if h=H−1

5: Bayesian linear regression for the value function

θlh←
1

σ2

(
1

σ2
A>A+λI

)−1

A>b

Σlh←
(

1

σ2
A>A+λI

)−1

6: Sample θ̃lh∼N(θlh,Σlh) from Gaussian posterior
7: end for

RLSVI with Greedy Action
1: Input: Features Φ0, ..,ΦH−1; σ > 0, λ > 0
2: for l = 0, 1, .. do
3: Compute θ̃l0, .., θ̃l,H−1 using RLSVI algorithm
4: Observe sl0
5: for h = 0, .., H − 1 do
6: Sample alh ∈ arg maxα∈A

(
Φhθ̃lh

)
(slh, α)

7: Observe rlh and sl,h+1

8: end for
9: Observe rlH

10: end for

Regret Bound for Tabula Rasa
We study a simple tabular setting without prior knowledge,
Φh = I for all period h (i.e. without generalization).

Non-essential simplifying assumptions:
• S, A, H, and π, are deterministic
• rewards R(s, a, h) are drawn from independent

Dirichlet priors αR(s, a, h) ∈ <2
+ on {−1, 0}.

• transition probabilities P (s, a, h, ·) are drawn from in-
dependent Dirichlet priors αP (s, a, h) ∈ <S+.

Theorem: For RLSVI with Φh = I ∀h, λ≥
max(s,a,h)

(
1TαR(s,a,h)+1TαP (s,a,h)

)
and σ≥

√
H2+1:

E
[
Regret(T, πRLSVI,M∗)

]
≤ Õ

(√
H3SAT

)
Remark: better than state-of-the-art Õ(

√
H3S2AT ) re-

gret for tabular RL (see Jaksch et al., 2010)

Key Idea for Proof: the notion of stochastic optimism.
It is not crucial that PSRL samples from the exact posterior
distribution. RLSVI will succeed whenever the samples are
sufficiently spread out but still concentrate with the data.

Experiment 1 - a chain MDP
Consider the MDP of Figure 2 with S=H=N=50, where
dithering strategies are provably inefficient.
Coherent learning: 10 basis functions are generated ran-
domly to span a space which does include Q∗h.

Figure 3: RLSVI demonstrates efficient exploration.

Experiment 1 - a chain MDP
• Dashed line: dithering lower bound 2N−1.
• Solid line: 1

10H
2SA lower bound for any tabular

learning algorithm (Dann & Brunskill, 2015)

Figure 4: Examine RLSVI as we vary chain length N

Figure 5: Examine RLSVI as we vary basis functions K

Figure 6: Empirical support for polynomial learning in RLSVI.

• Generate agnostic basis functions φhk ∼ N(Q∗h, ρI)

Figure 7: RLSVI is somewhat robust to model mis-specification.

Experiment 2 - Tetris
Apply RLSVI and LSVI (with tuned ε) to Tetris:
• 2D grid with 20 rows and 10 columns
• objective: maximize the total number of rows re-

moved before the game ends
• 22 benchmark features (Bertsekas & Ioffe, 1996)

• no fixed episode length: adapt RLSVI/LSVI by ap-
proximating a time-homogenous Q∗

RLSVI/LSVI vs. LSPI with same features:
• higher final performance: RLSVI ' 4500, LSVI '

3500, best score of LSPI: 3183

• RLSVI and LSVI learn from scratch while LSPI re-
quires an initial policy

Figure 8: Learning curves for LSVI + RLSVI (left). Improve-
ment magnified on difficult 4-row tetris with SZ pieces (right).

Experiment 3 - Recommendations
Recommend J out of N products sequentially. State
x ∈ {±1, 0}N indicates what products the customer has
observed, and whether she likes or dislikes each one. The
probability the customer will like a new product a is

P(a|x) = 1/ (1 + exp (− [βa +
∑
n γanxn]))

RL setting: (1) P(a|x) is unknown; (2) each customer is
modeled as an episode with horizon H = J ; (3) β = 0 and
γ is randomly sampled; (4) K = N2 + N basis functions:
φm(x, a) = 1{a = m} and φmn(x, a) = xn1{a = m}

• RLSVI outperforms LSVI with Boltzmann explo-
ration (with a wide range of temperatures)

• RLSVI outperforms bandit algorithms (both contex-
tual and non-contextual) and optimal myopic policy

Figure 9: RLSVI drives an efficient recommendation system.


