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ABSTRACT

Any reinforcement learning algorithm that ap-

plies to all MDPs will suffer Q(v/SAT) regret on
some MDP, where T’ is the elapsed time and S is
the number of states and A is the number of ac-
tions. In many problems S and A are so huge that
general regret bounds are totally impractical.

We show that, if the system is known to be a
factored MDD, it is possible to achieve regret that
scales with the number of parameters rather than
the number of states. We provide two algorithms

that satisty near-optimal regret bounds in this
context: PSRL and UCRL-Factored.

PROBLEM FORMULATION

Learn to optimize a random finite horizon MDP
M in repeated finite episodes of interaction.

Environment

Reward

Figure 1: classic reinforcement learning setting

State space S, action space A
Rewards r; ~ R™ (s, a;)
Transitions s;+1 ~ PM (s, a;)
Epsiode length 7, define ¢, := (k —

)T+ 1

For MDP M and policy p, define a value function
—M
M,u Z R (Sj7 aj)

Define the regret in eplsode k using i on M*
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optimal value
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Naive exploration such as Boltzman or e—greedy
can lead to exponential regret. Good performance
requires balancing exploration vs exploitation.
Carefully designed optimism or posterior sam-
pling can learn quickly in factored MDPs.

And finally Regret(T, 7w, M*) :=

IN FACTORED MDPS

[AN OSBAND AND BENJAMIN VAN ROY

FACTORED MDPS

MDP with conditional independence structure.

Figure 2: a graphical model for transitions.

Definition 1 (Scope operation for factored sets).

Forany ¥ = A} x .. x &, and Z C {1,2,..,n}

define X' | 7] := ) A; and elements x| 7] € X|Z].
icZ

Definition 2 (Factored reward functions).

The reward function r is factored over § x A =

X =X x .. x X, with scopes 71, ..2; <=

E[r(x)] = Z E|r;(x[Z;])| and each r; observed

Definition 3 (Factored transition functions).
The transition function P is factored over &S x A =
X=X x..xX,and § = &1 x .. xS, with scopes

)

MAIN RESULTS

For M* factored with known graphical structure
as above then for PSRL and UCRL-Factored

Z\/IXZPHSJ\T

Here = is a measure of MDP connectedness for
each algorithm, expected span [E|V| for PSRL and
diameter D for UCRL-Factored.

PSRL’s bounds are tighter since W(M) < D(M)
and may be exponentially smaller. However,
UCRL-Factored holds with high probability for
any M™ not just in expectation over the prior.

Regret(T, M™)

Key point: For m independent components with

O(mS+/ AT) and close to
vV (SA)™T

N —
general MDP lower bound

S states and A actions =

m+/SAT) <
N —’
factored MDP lower bound
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OPTIMISM

For each episode k:

1. Form M subset of MDPs M that are statis-
tically plausible given the data.

r )

2. Use policy py, € argmax § max VY (s) ¢.

L | MeMy )
Proof sketch:
Ap = V:1(5) — Vkﬁ1(3)
= (ka,l(s) — Vkﬁl(s)) + (V**1(3) — ka1(3))
Imagined - Actual <0 by optimism

We can decompose this into Bellman error:

Vk,l_vk,l — Z (77~c 7 77{ z) Vk 1+1 + Z dtk—i—l

1=1

A,—/

B:=Bellman error IE=0 martingale

We can now use the Holder inequality to bound:

. (—k — 1 )
B§Z<‘R —R|—|-§ Wy HPk—P*H1>

W
—1 \
reward error MDP span transition error

We conclude the proof by upper bounding these
deviations by maximum possible within Mj.
Concentration inequalities allows us to build
tight M, that contain M* with high probability.

KEY LEMMA

For any P, P factored transition functions we may
bound their L1 distance by the sum of the differ-
ences of their factorizations:

|P(z) = Pz)]l1 < Z | Pi (2 P, (z[Zi])IIx

Proof sketch:
For any a4, as, 81,82 € |0,1] :

|041042 — 5152| < o9 \041 — 51\ + 51 |042 — 52‘-

Repeat this argument for desired result.
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POSTERIOR SAMPLING

For each episode k:

1. Sample an MDP from the posterior distribu-
tion for the true MDP: My, ~ ¢(-|Hy).

2. Use policy pux € arg maxV,"x.
L

Proof sketch:
Ap = V5i(s)—Vii(s)

= (Vi'1(s) = Vi1 (s)) +
N— ——
Imagined - Actual

(V:,1(3) — ka,1(3))
E[-]=0

Then follow the analysis as per optimism.

EXAMPLE

Production line with 100 machines, each with 3
states and 3 actions. Each machine generates
some revenue we want to maximize jointly.

Flgur 3 automated p odtlon line
This MDP has state s = (s, ..,5100) and action
a — (al,..,aloo). Here S = A = 3100 ~ 1050,
so even a maximally efficient general-purpose
learner would have regret Q(v/ SAT) ~ 10°°/T.

If over a single timestep, each machine depends

directly only upon its neighbours then this be-
comes a factored MDP. Now |X[Z}"]| < 3° and
S| < 3 for each machine j.

We exploit this graphical structure for exponen-
tially smaller regret ~ 100/33 x 3 x T ~ 103\/T.

Conceptually simple and practical algorithms
with regret bounds that scale with the number
of parameters, not the number of states.
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