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ABSTRACT
Any reinforcement learning algorithm that ap-
plies to all MDPs will suffer Ω(

√
SAT ) regret on

some MDP, where T is the elapsed time and S is
the number of states and A is the number of ac-
tions. In many problems S and A are so huge that
general regret bounds are totally impractical.

We show that, if the system is known to be a
factored MDP, it is possible to achieve regret that
scales with the number of parameters rather than
the number of states. We provide two algorithms
that satisfy near-optimal regret bounds in this
context: PSRL and UCRL-Factored.

PROBLEM FORMULATION
Learn to optimize a random finite horizon MDP
M in repeated finite episodes of interaction.

Figure 1: classic reinforcement learning setting

• State space S, action space A
• Rewards rt ∼ RM (st, at)

• Transitions st+1 ∼ PM (st, at)

• Epsiode length τ , define tk := (k − 1)τ + 1

For MDP M and policy µ, define a value function

VMµ,i(s) := EM,µ

 τ∑
j=i

R
M

(sj , aj)
∣∣∣si = s

 ,
Define the regret in episode k using µk on M∗

∆k :=
∑
S
ρ(s)

(
VM

∗

µ∗,1(s)︸ ︷︷ ︸
optimal value

− VM
∗

µk,1
(s)︸ ︷︷ ︸

actual value

)

And finally Regret(T, π,M∗) :=
∑dT/τe
k=1 ∆k.

Naive exploration such as Boltzman or ε-greedy
can lead to exponential regret. Good performance
requires balancing exploration vs exploitation.
Carefully designed optimism or posterior sam-
pling can learn quickly in factored MDPs.

FACTORED MDPS
MDP with conditional independence structure.

Figure 2: a graphical model for transitions.

Definition 1 (Scope operation for factored sets).
For any X = X1 × .. × Xn and Z ⊆ {1, 2, .., n}
define X [Z] :=

⊗
i∈Z
Xi and elements x[Z] ∈ X [Z].

Definition 2 (Factored reward functions).
The reward function r is factored over S × A =
X = X1 × ..×Xn with scopes Z1, ..Zl ⇐⇒

E[r(x)] =
l∑
i=1

E
[
ri(x[Zi])

]
and each ri observed

Definition 3 (Factored transition functions).
The transition function P is factored over S×A =
X = X1× ..×Xn and S = S1× ..×Sm with scopes
Z1, ..Zm ⇐⇒

P (s|x) =
m∏
i=1

Pi

(
s[i]

∣∣∣∣ x[Zi]

)

MAIN RESULTS
For M∗ factored with known graphical structure
as above then for PSRL and UCRL-Factored

Regret(T,M∗) = Õ

Ξ
m∑
j=1

√
|X [ZPj ]| |Sj | T

 .

Here Ξ is a measure of MDP connectedness for
each algorithm, expected span E[Ψ] for PSRL and
diameter D for UCRL-Factored.
PSRL’s bounds are tighter since Ψ(M) ≤ D(M)
and may be exponentially smaller. However,
UCRL-Factored holds with high probability for
any M∗ not just in expectation over the prior.

Key point: For m independent components with
S states and A actions = Õ(mS

√
AT ) and close to

m
√
SAT )︸ ︷︷ ︸

factored MDP lower bound

�
√

(SA)mT︸ ︷︷ ︸
general MDP lower bound

.

OPTIMISM
For each episode k:

1. FormMk subset of MDPs M that are statis-
tically plausible given the data.

2. Use policy µk ∈ arg max
µ

{
max
M∈Mk

VMµ (s)

}
.

Proof sketch:
∆k = V ∗∗,1(s)− V ∗k,1(s)

=
(
V kk,1(s)− V ∗k,1(s)

)︸ ︷︷ ︸
Imagined - Actual

+
(
V ∗∗,1(s)− V kk,1(s)

)︸ ︷︷ ︸
≤0 by optimism

We can decompose this into Bellman error:

V kk,1−V ∗k,1 =
τ∑
i=1

(
T kk,i − T ∗k,i

)
V kk,i+1︸ ︷︷ ︸

B:=Bellman error

+
τ∑
i=1

dtk+1︸ ︷︷ ︸
E=0 martingale

.

We can now use the Hölder inequality to bound:

B ≤
τ∑
i=1

{
|Rk −R∗|︸ ︷︷ ︸
reward error

+
1

2
Ψk︸︷︷︸

MDP span

‖P k − P ∗‖1︸ ︷︷ ︸
transition error

}

We conclude the proof by upper bounding these
deviations by maximum possible within Mk.
Concentration inequalities allows us to build
tightMk that contain M∗ with high probability.

POSTERIOR SAMPLING
For each episode k:

1. Sample an MDP from the posterior distribu-
tion for the true MDP: Mk ∼ φ(·|Ht).

2. Use policy µk ∈ arg max
µ

VMk
µ .

Proof sketch:
∆k = V ∗∗,1(s)− V ∗k,1(s)

=
(
V kk,1(s)− V ∗k,1(s)

)︸ ︷︷ ︸
Imagined - Actual

+
(
V ∗∗,1(s)− V kk,1(s)

)︸ ︷︷ ︸
E[·]=0

Then follow the analysis as per optimism.
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KEY LEMMA

For any P, P̃ factored transition functions we may
bound their L1 distance by the sum of the differ-
ences of their factorizations:

‖P (x)− P̃ (x)‖1 ≤
m∑
i=1

‖Pi(x[Zi])− P̃i(x[Zi])‖1

Proof sketch:
For any α1, α2, β1, β2 ∈ [0, 1] :

|α1α2 − β1β2| ≤ α2 |α1 − β1|+ β1 |α2 − β2| .

Repeat this argument for desired result.

EXAMPLE
Production line with 100 machines, each with 3
states and 3 actions. Each machine generates
some revenue we want to maximize jointly.

Figure 3: automated production line

This MDP has state s = (s1, .., s100) and action
a = (a1, .., a100). Here S = A = 3100 ' 1050,
so even a maximally efficient general-purpose
learner would have regret Ω(

√
SAT ) ' 1050

√
T .

If over a single timestep, each machine depends
directly only upon its neighbours then this be-
comes a factored MDP. Now |X [ZPj ]| ≤ 33 and
|Sj | ≤ 3 for each machine j.

We exploit this graphical structure for exponen-
tially smaller regret ' 100

√
33 × 3× T ' 103

√
T .

SO WHAT?
Conceptually simple and practical algorithms
with regret bounds that scale with the number
of parameters, not the number of states.


