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• Measure:  
 

• Theorem: In a general MDP with S states and A actions 

• Problem: We want low regret even when S and A are huge!

• Goal: Maximize long term rewards in an unknown environment.

• Key tradeoff: Exploration vs Exploitation

Reinforcement Learning

Rewards of optimal controller Actual rewards

We want algorithms to learn good decisions  
quickly in any environment.
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• Key idea: Learn quickly via low-dimensional structure.

• Definition: Factored MDP ↔ conditional independence.

• Example: In a production line, each machine’s state  
              depends directly only on its neighbors.
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Naive bounds:  
Exponential in K

New bounds:  
Linear in K

Learning in Factored MDPs

• Algorithms: Optimism and Posterior Sampling.

• Bounds: For K independent segments of an MDP

Our regret bounds scale with number of parameters 
rather than number of states.


