
RANDOMIZED PRIOR FUNCTIONS
FOR DEEP REINFORCEMENT LEARNING

IAN OSBAND, JOHN ASLANIDES, ALBIN CASSIRER

ABSTRACT
Dealing with uncertainty is essential for effi-
cient RL. Many popular approaches for super-
vized learning are poorly-suited for RL. Others,
such as bootstrapped ensembles, have no mecha-
nism for ‘prior’ uncertainty.

We highlight this shortcoming and propose a
simple remedy: add a randomized untrainable
‘prior’ network to each member of ensemble.
We prove this approach is efficient with linear
representations, provide simple illustrations of its
efficacy with nonlinear representations and show
that this approach scales to large problems.

RANDOMIZED PRIOR FUNCTION

Algorithm 1 Ensemble posterior with prior effect.

Require: Data D⊆{(x,y)|x∈X ,y∈Y}, loss function L,
neural model fθ :X→Y , Ensemble size K∈N, dis-
tribution over priors P⊆{P(p)|p:X→Y}.

1: for k = 1, ..,K do
2: initialize θk ∼ Glorot initialization.
3: form Dk = data_noise(D) (e.g. bootstrap).
4: sample prior function pk ∼ P .
5: optimize∇θ|θ=θkL(fθ + pk;Dk) via ADAM.

6: return posterior ensemble {fθk + pk}Kk=1.

For deep RL, we apply Algorithm 1 to DQN, with
TD loss Lγ(θ; θ−, p,D) :=∑
t∈D

(
rt+γmax

a′∈A

targetQ︷ ︸︸ ︷
(fθ−+ p︸︷︷︸

prior

)(s′t,a
′)−

onlineQ︷ ︸︸ ︷
(fθ+ p︸︷︷︸

prior

)(st,at)
)2
.

Algorithm 2 learn_bootdqn_with_prior
Agent: θ1, .., θK trainable weights

p1, .., pK fixed prior functions
Lγ(θ=·; θ−=·, p=·,D=·) TD error loss
ensemble_replay perturbed data

Updates: θ1, .., θK agent weights
1: for k in (1, . . . ,K) do
2: Data Dk ← ensemble_replay[k].sample()
3: optimize∇θ|θ=θkL(θ; θk, pk,Dk) via ADAM.

• Ensemble {Qθk}Kk=1 approximates posterior.
• Each episode: sample j∼Unif(1,..,K) and fol-

lowQθj greedy policy. ' Thompson sampling.
• ‘Deep exploration via randomized value functions’.

BAYESIAN LINEAR REGRESSION

Let θ∈Rd, priorN(θ,λI) and dataD={(xi,yi)}ni=1

for yi=θTxi+εi with εi∼N(0,σ2) iid. Then, con-
ditioned on D, the posterior for θ is Gaussian:

E[θ |D]=
(

1

σ2
XTX+

1

λ
I

)−1(
1

σ2
XT y+

1

λ
θ

)
,

Cov[θ|D]=
(

1

σ2
XTX+

1

λ
I

)−1

. (1)

Equation (1) relies on Gaussian conjugacy and
linear models, which cannot easily be extended
to deep neural networks. Lemma 1 shows that
our approach: ‘train on noisy data with random
prior functions’ is Bayes posterior for linear fθ.

Lemma 1 (Computational posterior samples).
Let fθ(x) = xT θ, ỹi ∼ N(yi, σ

2) and θ̃ ∼ N(θ, λI).
Then either of the following optimization prob-
lems generate a sample θ | D according to (1):

argmin
θ

n∑
i=1

‖ỹi−fθ(xi)‖22+
σ2

λ
‖θ̃−θ‖22, (2)

θ̃+argmin
θ

n∑
i=1

‖ỹi−(fθ̃+fθ)(xi)‖
2
2+

σ2

λ
‖θ‖22. (3)

Proof. Note output is Gaussian, match moments.

VISUALIZING PRIOR EFFECT
• Training data black.
• Prior p(x) in blue.

• Train fθ(x) dashed.
• Predict (fθ + p)(x) red

.

Figure 1: Visualizing output in 1D regression.

• All networks can optimize to fit observed data.
• Bootstrap (data noise) handles noisy data.
• Prior dominates outside range of data.
• Resultant ensemble {fθk + pk}Kk=1 ' posterior.

WHY DO WE NEED THIS?
Popular approaches have serious shortcomings!

1. Dropout as posterior approximation

• Dropout does not concentrate with data.
• Even ‘concrete’ not necessarily correct rate.

2. Variational inference on Bellman error
• VI on Bellman error 6= VI on value.
• If you train Qθ(s,a)'D r+γmaxαQθ(s

′,α)
must note Qθ(s,a),Qθ(s′,α) are not indep.

3. Distributional reinforcement learning

• Distribution outcome vs. posterior of beliefs.
• ‘Aleatoric’ vs ‘epistemic’ uncertainty.

4. Count-based exploration bonus

• Density metric is not connected to task.
• With generalization ‘count’ 6= ‘uncertainty’.

For more detail see Section 2 of the paper.

DRIVING DEEP EXPLORATION
Scalable ‘chain’ environments test exploration.

Figure 2: Describing ‘deep sea’ chain environments.

‘Time to learn’ := #episodes until AveRegret < 0.9.

• ε-greedy = DQN with annealing dithering.
• BS = BootDQN without explicit prior.
• BSR = BootDQN with regularize ‖θk − θinitk ‖.
• BSP = BootDQN with prior, Qk = fθk + pk.

Figure 3: Only BSP scales to large problems. Plotting
log-log suggests an empirical scaling Tlearn = Õ(N3).

HOW DOES IT WORK?
X Posterior concentration: prior pk motivates un-

certainty, but fθ eventually learns to fit it away.
X Multi-step uncertainty: EachQk trains only on

its own target value =⇒ temporally-consistent.
X Epistemic vs aleatoric: Uncertainty in the mean

TD loss and does not fit the noise in returns.
X Task-appropriate generalization: Explore by

uncertainty in Q, rather than density on state.
X Intrinsic motivation (vs BootDQN no prior):

Sparse rewards =⇒ bootstrap may predict zero
for all states. Prior pk makes this unlikely at
rarely-seen states s̃ where E[maxαQk(s̃,α)]>0.

Figure 4: Visualizing how BootDQN+prior explores.

SCALING UP
Insights carry over to large-scale ‘deep RL’.

Figure 5: The prior scaling Qθk=fθk+βpk qualitatively
changes behavior on Montezuma’s revenge.

MORE INFORMATION
Paper site (+ code): bit.ly/rpf_nips
Tweet: @ianosband,@john_aslanides
Personal site: iosband.github.io

SO WHAT?
1. Highlight need for prior effect in deep RL.

2. Random prior passes linear ‘sanity check’.

3. Show scalable deep RL in toy problem.

4. Insights carry over to Montezuma’s revenge.


