

ABSTRACT

Dealing with uncertainty is essential for efficient RL. Many popular approaches for supervized learning are poorly-suited for RL. Others, such as bootstrapped ensembles, have no mechanism for 'prior' uncertainty.

We highlight this shortcoming and propose a simple remedy: add a randomized untrainable 'prior' network to each member of ensemble. We prove this approach is efficient with linear representations, provide simple illustrations of its efficacy with nonlinear representations and show that this approach scales to large problems.

RANDOMIZED PRIOR FUNCTION

Algorithm 1 Ensemble posterior with prior effect.

Require: Data $\mathcal{D} \subseteq \{(x,y) | x \in \mathcal{X}, y \in \mathcal{Y}\}$, loss function \mathcal{L} , neural model $f_{\theta}: \mathcal{X} \to \mathcal{Y}$, Ensemble size $K \in \mathbb{N}$, distribution over priors $\mathcal{P} \subseteq \{\mathbb{P}(p) | p : \mathcal{X} \rightarrow \mathcal{Y}\}.$

- 1: for k = 1, ..., K do
- initialize $\theta_k \sim \text{Glorot initialization}$.
- form $\mathcal{D}_k = \mathtt{data_noise}(\mathcal{D})$ (e.g. bootstrap).
- sample prior function $p_k \sim \mathcal{P}$.
- optimize $\nabla_{\theta|\theta=\theta_k} \mathcal{L}(f_{\theta}+p_k;\mathcal{D}_k)$ via ADAM.
- 6: return posterior ensemble $\{f_{\theta_k} + p_k\}_{k=1}^K$.

For deep RL, we apply Algorithm 1 to DQN, with TD loss $\mathcal{L}_{\gamma}(\theta; \theta^{-}, \mathbf{p}, \mathcal{D}) :=$ online Q $\sum_{a'\in\mathcal{A}} (r_t + \gamma \max_{a'\in\mathcal{A}} (f_{\theta^-} + p)(s'_t, a') - (f_{\theta^+} p)(s_t, a_t))^2.$

Algorithm 2 learn_bootdqn_with_prior

Agent:	$ heta_1,, heta_K$	trainable weights
	$p_1,,p_K$	fixed prior functions
	$\mathcal{L}_{\gamma}(heta heta heta ; heta^{-} heta \cdot, extsf{p} heta \cdot, \mathcal{D} heta \cdot)$	TD error loss
	ensemble_replay	perturbed data
Updates	: $ heta_1,, heta_K$	agent weights
1: for k in $(1,, K)$ do		
2: Da	ta $\mathcal{D}_k \leftarrow \texttt{ensemble_rep}$	<pre>lay[k].sample()</pre>
3: opt	timize $\nabla_{\theta \theta=\theta_k} \mathcal{L}(\theta;\theta_k,\mathbf{p})$	$(\mathcal{D}_k, \mathcal{D}_k)$ via ADAM.
• Ensemble $\{Q_{\theta_k}\}_{k=1}^K$ approximates posterior.		
• Each e	pisode: sample $j \sim U$	$\operatorname{nif}(1,,K)$ and fol-
$\log Q_{\theta}$	j_j greedy policy. \simeq Th	ompson sampling.
• 'Deep e:	xploration via randomi	zed value functions'.

RANDOMIZED PRIOR FUNCTIONS FOR DEEP REINFORCEMENT LEARNING IAN OSBAND, JOHN ASLANIDES, ALBIN CASSIRER

BAYESIAN LINEAR REGRESSION

Let $\theta \in \mathbb{R}^d$, prior $N(\overline{\theta}, \lambda I)$ and data $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ for $y_i = \theta^T x_i + \epsilon_i$ with $\epsilon_i \sim N(0, \sigma^2)$ iid. Then, conditioned on \mathcal{D} , the posterior for θ is Gaussian:

$$\Sigma[\theta|\mathcal{D}] = \left(\frac{1}{\sigma^2}X^T X + \frac{1}{\lambda}I\right)^{-1} \left(\frac{1}{\sigma^2}X^T y + \frac{1}{\lambda}\overline{\theta}\right),$$

$$\operatorname{Cov}[\theta|\mathcal{D}] = \left(\frac{1}{\sigma^2}X^T X + \frac{1}{\lambda}I\right)^{-1}.$$
(1)

Equation (1) relies on Gaussian conjugacy and linear models, which cannot easily be extended to deep neural networks. Lemma 1 shows that our approach: 'train on noisy data with random **prior functions' is Bayes posterior for linear** f_{θ} **.**

Lemma 1 (Computational posterior samples). Let $f_{\theta}(x) = x^T \theta$, $\tilde{y}_i \sim N(y_i, \sigma^2)$ and $\tilde{\theta} \sim N(\bar{\theta}, \lambda I)$. Then either of the following optimization problems generate a sample $\theta \mid \mathcal{D}$ according to (1):

$$\operatorname{argmin}_{\theta} \sum_{i=1}^{n} \|\tilde{y}_{i} - f_{\theta}(x_{i})\|_{2}^{2} + \frac{\sigma^{2}}{\lambda} \|\tilde{\theta} - \theta\|_{2}^{2}, \qquad (2)$$

$$\tilde{\theta} + \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{n} \|\tilde{y}_{i} - (f_{\tilde{\theta}} + f_{\theta})(x_{i})\|_{2}^{2} + \frac{\sigma^{2}}{\lambda} \|\theta\|_{2}^{2}. \quad (3)$$

Proof. Note output is Gaussian, match moments.

VISUALIZING PRIOR EFFECT

- All networks can optimize to fit observed data.
- Bootstrap (data noise) handles noisy data.
- Prior dominates outside range of data.

• Resultant ensemble $\{f_{\theta_k} + p_k\}_{k=1}^K \simeq$ posterior.

	o S
	o E
	o A
	o E
	o S
•	1 poli
•	"a
•	No de
	Figu
	lime
	د_ 0 ⁻
lacksquare	BS
	RSI
	נטע
•	BSI
	500000
ĽIJ	400000 -
o leai	300000 -
me ta	200000 -
Ti	100000 -
	0 -[
_	
	Figu
1	00-10

WHY DO WE NEED THIS?

Popular approaches have serious shortcomings!

1. Dropout as posterior approximation

• Dropout does not concentrate with data. • Even 'concrete' not necessarily correct rate.

2. Variational inference on Bellman error

• VI on Bellman error \neq VI on value. • If you train $Q_{\theta}(s,a) \simeq^{D} r + \gamma \max_{\alpha} Q_{\theta}(s',\alpha)$ must note $Q_{\theta}(s,a), Q_{\theta}(s',\alpha)$ are not indep.

3. Distributional reinforcement learning

• Distribution outcome vs. posterior of beliefs. • 'Aleatoric' vs 'epistemic' uncertainty.

4. Count-based exploration bonus

• Density metric is not connected to task. • With generalization 'count' \neq 'uncertainty'.

For more detail see Section 2 of the paper.

DRIVING DEEP EXPLORATION

Scalable 'chain' environments test exploration.

• Environment description:

State space = $N \times N$ grid.

Begin top left, fall one row each step. Actions "left" or "right" vary per state. Big reward +1 in chest.

Small cost -0.1/N for moving "right".

icy > 0, 1 policy = 0, all others < 0. piece of hay in a needle-stack"

eep exploration $\rightarrow 2^{N}$ episodes to learn.

ire 2: Describing 'deep sea' chain environments.

e to learn' := #episodes until AveRegret < 0.9.

greedy = DQN with annealing dithering. = BootDQN without explicit prior.

- R = BootDQN with regularize $\|\theta_k \theta_k^{\text{init}}\|$.
- P = BootDQN with prior, $Q_k = f_{\theta_k} + p_k$.

S	O WH
1.	Highlig
2.	Rando
3.	Show s
4.	Insight

Paper site (+ code): bit.ly/rpf_nips Tweet: @ianosband,@john_aslanides **Personal site:** iosband.github.io

HOW DOES IT WORK?

Posterior concentration: prior p_k motivates uncertainty, but f_{θ} eventually learns to fit it away. **Multi-step uncertainty**: Each Q_k trains only on its *own* target value \implies temporally-consistent. Epistemic vs aleatoric: Uncertainty in the mean TD loss and does not fit the noise in returns. Task-appropriate generalization: Explore by uncertainty in *Q*, rather than density on state. Intrinsic motivation (vs BootDQN no prior): Sparse rewards \implies bootstrap may predict zero for *all* states. Prior p_k makes this unlikely at rarely-seen states \tilde{s} where $\mathbb{E}[\max_{\alpha}Q_k(\tilde{s},\alpha)] > 0$.

• Compare **DQN+ɛ-greedy** vs **BootDQN+prior**. • Define ensemble average: $\frac{1}{K} \sum_{\alpha}^{K} \max_{\alpha} Q_k(s, \alpha)$ • Heat map shows estimated value of each state

Figure 4: Visualizing how BootDQN+prior explores.

changes behavior on Montezuma's revenge.

AT?

ight need for prior effect in deep RL.

om prior passes linear 'sanity check'.

scalable deep RL in toy problem.

ts carry over to Montezuma's revenge.

MORE INFORMATION

